Appendix: Detailed analysis of transmission lines
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Figure 15 (a) Power flow from left to right, ammeter reads positive current; (b)
from right to left, ammeter reads negative current. Voltmeter reads positive in both
cases.

The job of a conductor is to carry power. This power might correspond to information
(i.e., a signal) or it might be large, such as the power to drive a motor. Power flow has a
direction as can be seen from the example of a source connected to a load in Fig. 15.
This has a voltmeter placed across the two conductors and an ammeter in series with the
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conductor connected to the positive source terminal. In Fig.15(a) the voltmeter reads a
positive voltage V and the ammeter reads a positive current J; this corresponds to the
power W=[V being positive indicating a flow of energy from left to right. If the source
polarity is reversed in Fig. 15(a), then both 7 and V also reverse polarity, but # remains
positive indicating energy still flows from left to right. However, if the source and load
locations are interchanged as in Fig.15(b), so that the source is now on the right and the
load is now on the left, the current / will be negative when V is positive and vice versa
so that W will be negative, indicating energy flow from right to left. If the source is AC,
then both 7 and V' will reverse polarity during each half-cycle, but W will always be
positive for Fig. 15(a) or always negative For Fig.15(b). The polarity of W thus indicates
the direction of power flow for both AC and DC systems. This concept of directed power
flow is called the Poynting flux.

A transmission line is a pair of conductors that carry power from a source to a load, with
distributed capacitance and inductance taken into account as well as the finite
propagation velocity along the line. The inductance and capacitance are both expressed as
value per length of line and these values depend on the dielectric and magnetic
arrangement of the conductors. The geometric dependence involves the natural logarithm
of the ratio of two distances (the distance between conductors to the radius of the
conductors for two wire lines, the outer conductor radius and the inner conductor radius
for coaxial lines) and so is a rather weak dependence. The product of inductance per
length and capacitance per length gives the inverse of the velocity of propagation while
the ratio of inductance per length to capacitance per length gives the characteristic
impedance. According to Fourier theory, any signal can be decomposed into frequency
components. A component with frequency f will propagate along the transmission line
with velocity ¢ and wavelength A=c/f. Each complex Fourier component propagates with
the form exp(2i(ft-x/A)) if propagation is in the positive x direction (say left to right) but
with the form exp(27i(fi+x/A)) if propagation is in the negative x direction (right to left).
A voltmeter at a point on a transmission line that has only a forward propagating signal
will measure a voltage V;. The forward propagating voltage will have an associated
current /; and the ratio of these is given by the characteristic impedance of the
transmission line Z. If the signal propagates in the reverse direction (from right to left)
there will be a voltage V.. However, the power flow is now in the opposite direction and
as discussed in the section on power flow the associated current will be negative.
If there are both forward and reverse propagating power flows, the voltmeter will
therefore measure

V= Vi exp(mi(fi-x/A)) + V; exp(2ri(fi+x/A)).
while the ammeter will measure

I= (Vi/Z;) expQmi(ft- x/A)) - (Vi | Zc) expRri(fi+ x/A).
The ratio of measured voltage to measured current is
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vV Vi exp(-2mi x/A) + V; exp(27i z/A) Ve+ V: exp(4mix/A)
- = ZC = ZC
1 Vi exp(-2mix/A) - V; exp(27ix/A) Ve - V; exp(4mix/A)

Let the point of measurement be at x=0 so the measured voltage current ratio is

1% Ve+V, 1+ V. [V
i/ —— Sl —— (1)

Suppose at location x there is an impedance Z (the terminating impedance) so defining
a = exp(4mix/A)

Z  Vi+ V,exp(dmix/d) 1+ (V, V) a

Z. VeV, exp(dmixid) - (Vi /IVDa

This can be solved to give

i 1 Z-Z
— e 2)

The above expression provides the important result that V; = 0 if Z= Z; i.e., there is no
reverse flowing power (i.e., no reflected power) if the transmission line is terminated with
a resistance equal to Z.. This situation is called a matched transmission line or a properly
terminated transmission line. If the line is properly terminated then Equation (1) shows
that V/I = Z; and this is true for any value of x, i.e., no matter how long the line is.

Now suppose that Z is not equal to Z. In this case Equation (2) must be substituted into
Equation (1) to obtain

14 Z cos(2mx/A) +1i Z sin(2mx/A)

- =127 3)
1 i Zsin(2nx/A) + Z cos(2mx/A)
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Consider various values of the ratio x/A. If this ratio is near zero, then cos(27x/A) is nearly
unity and sin(27x/A) is nearly zero so V/I=Z and the observed impedance at x=0 is the
same as the impedance at x. If x/4 is an integer, the same situation occurs, i.e., the
observed impedance at x=0 is the same as at x.

However, if x/A = Y4, i.e., the termination impedance Z is a quarter wavelength from the
measuring point z=0, then cos(27x/A)=0 and sin(2mx/A)=1 so V/I = (Z.)*/Z. If the
termination is a short (i.e., Z=0) then V/I will be infinite, i.e., act like an open circuit
whereas if the termination is an open (i.e., Z= infinite), then ¥/ will be zero, i.e., act like
an open circuit. Thus, a quarter wavelength of transmission line transforms shorts into
opens and vice versa.

Now consider the situation when Z is very different from Z (either much bigger or much
smaller) and x/4 is finite but much less than 1/4. This situation is relevant to many
ordinary circuits.

First consider the situation where Z is much larger than Z, i.e., the termination
impedance is much larger than the characteristic impedance of the transmission line. In
this case, the terms containing Z dominate in Equation (3) and cos(27x/4) is
approximately 1 while sin(27x/A) is approximately 27tx/A. In this case Equation(3)
becomes

V VA 1

I = @
I 227ix/A + Z, 2mix/(AZ) + 1/Z

To proceed further, consider the situation of a coaxial transmission line with inner
conductor having radius a, outer conductor having radius b, and dielectric €. Here the
inductance per length is |

L’ = (uo/2m)In(b/a) 6)
and the capacitance per length is

C’ =2ne/(In(b/a)). (7
Detailed derivation of the characteristic impedance requires analysis of the wave
differential equation; instead a simple energy argument will be used here. The wave
propagating along the transmission line is electromagnetic and on average half the energy
is in the electric field and half is in the magnetic field. Since the energy in an inductor is
LPP/2 and the energy in a capacitor is CV*/2 equating these energies gives CV> = LF or
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Z. = V/I= sqrt (L/C) =sqrt (L x/(C'x) )

The characteristic impedance is thus
Ze=sqrt( L’/C’y= (1/2m)sqrt(uo/e)In(b/a)

The velocity of propagation is
¢ =fA4=1/sqrt(uoe) ()

SO

2mz/(AZ) = 27ux fsqrt(uog) / ((1/27) sqrt(uo/e) In (bla) ) =27 fx 2ne/In(bla) =27 f C
where C is the cable capacitance for a length x. Thus, Equation (4) shows that when Z is
much larger than Z; and the cable length is much shorter than a quarter wavelength, the
cable acts like a capacitor C=xC” in parallel with the termination. This cable capacitance
will tend to short out high frequencies.

Next consider the situation where Z is much smaller than Z and x is again much less than
a quarter wavelength. In this case Equation (3) becomes

— = Z +iZ2mxld (5)

Using Equations (6) and (8) it is seen that

Z2mxlA = (1/27) sqrt(uo/e) In(b/a) 27xf sqrt(uee) = 27 f L'x
so here the cable behaves like an inductor L=L’x in series with the termination. Again,
the high frequency components will be attenuated relative to the low frequency
components. These results show that in order to have good high frequency response a
transmission line cable must be terminated by a resistance equal to the characteristic
impedance.
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